Significant Achievements (2021-25)

Six new hybrids and three varieties- Notified

ICH-5 (2021) SY:1.6 t/ha (RF); Oil: 45%; Rest. wilt; TN, AP, TG,Kar, MS, Odi

ICH-6 (2023)
SY:1.0-1-9 t/ha (RF & Irr):
Oil: 48%; Rest.:wilt; All India

TilhanTec SUNH-1 (2021) SY:2 t/ha: Oil: 38%; Rest.: Downy mildew

TilhanTec SUNH-2 (2024) SY:2 t/ha: Oil: 38%; Rest. to Downy mildew

TilhanTec SUNH-3 (2025) SY:2.2 t/ha: Oil: 38%; Rest.to Downy mildew

TilhanTec Til-1 (2023)
SY:1.0 t/ha: Oil: 45%;
Rest. to Alternaria, capsule borer;
Summer irrigated areas

ISH-402 (2023) (Hybrid)
SY:2.4 t/ha; Oil: 31%; Rest. wilt;
Irr. & RF areas

ISH-300 (2024) SY:1.8 t/ha; Oil: 38%; Rest. wilt; Irr. & RF areas

ISH-123 (2024) SY:1.6 t/ha; Oil: 34%; Rest. wilt; <u>RF areas</u>

Two Safflower Varieties (High oil: 38%; climate resilience) dedicated by Hon'ble PM

Hon'ble PM Sh.Narendra Modi ji on Aug 11, 2024 dedicated 109 high yielding, climate-resilient, and biofortified varieties at IARI, New Delhi

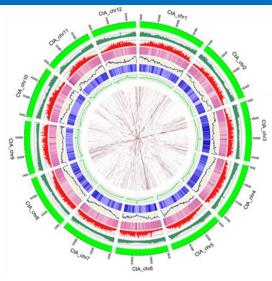
Seed yield: 1631 kg/ha; Oil yield: 564 kg/ha; Oil content: 34.3%

Seed yield: 1796 kg/ha; Oil content: 38%

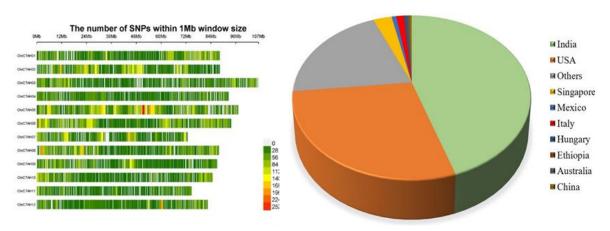
Dedication of sunflower Hybrid: 'TilhanTec-SunH-3' by Hon'ble Union Minister for Agriculture, Farmers Welfare and Rural Development, Shri Shivraj Singh Chouhan on 97th ICAR Foundation Day celebrations (16 July 2025)

SunH-3 dedicated by Hon'ble AM

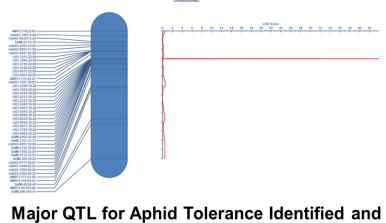
Seeds of SunH-3 in display

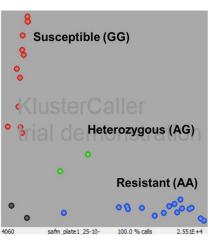


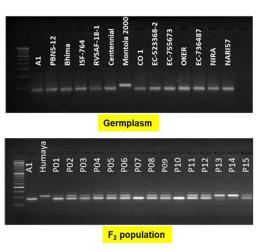
Indian Council of Agricultural Research. @icarindia · 3h Sunflower (Hybrid) TilhanTec-SUNH-3 (IIOSH-434)
#OnelCAR #Technology #ICAR @PMOIndia @ChouhanShivraj @PIB_India @AgriGol @mygovindia

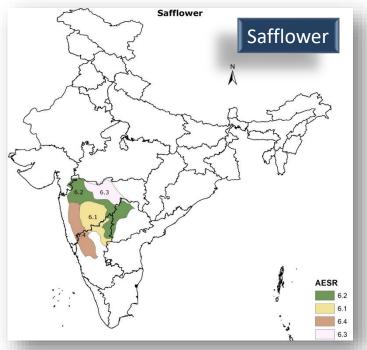


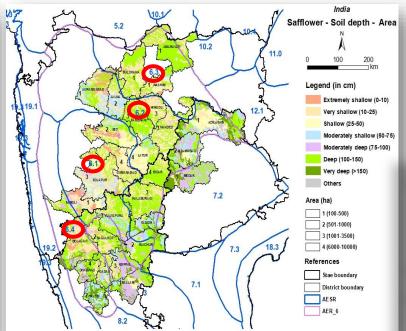
TilhanTec SUNH-3 (2025); SY:2.2 t/ha: Oil: 38%


Molecular Breeding in safflower

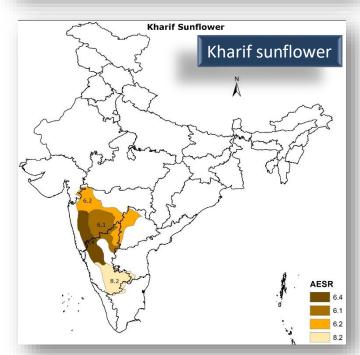

Reference Genome of Safflower Constructed

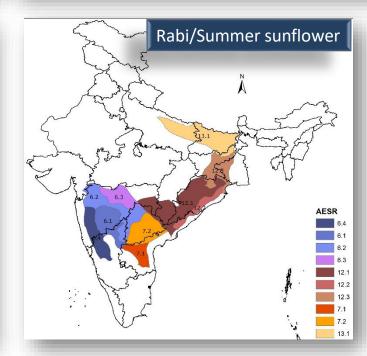

Core Set of 540 NBPGR Safflower Accessions
Developed via Genotyping

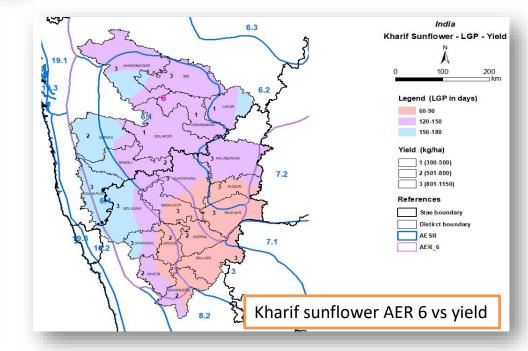

QTL for Aphid Tolerance Identified and Fine-Mapped in Safflower



MAS Assay for Wilt Resistance in Safflower Developed

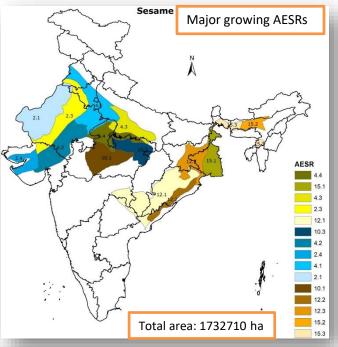

Gel-Based MAS Assay Developed for High Oleic Trait in Safflower

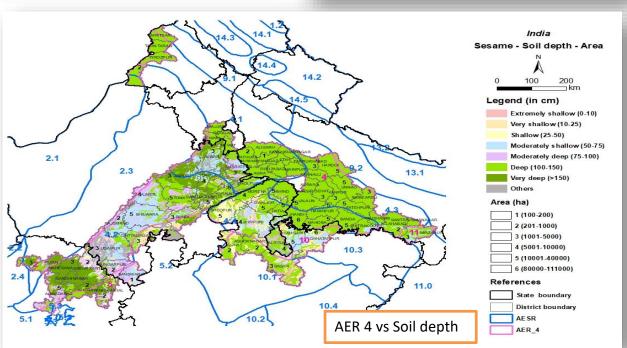


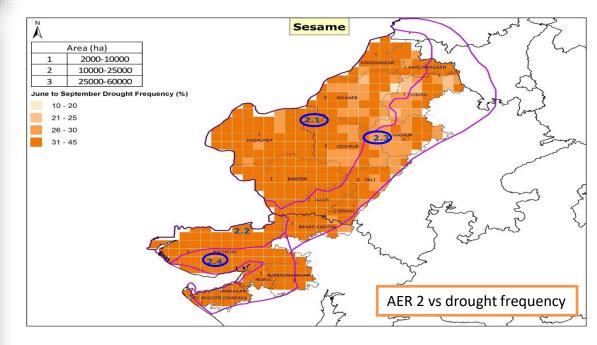


				Λ		\/' - I -		0.4
	No. of		Y	Area range		Yield range		%
AESR	districts	A (ha)	(kg/ha)	min.	max.	min.	max.	Area
6.2	13	20189	735	72	9920	381	1498	30
6.1	6	18595	546	547	7293	421	632	28
6.4	9	13548	593	66	6033	361	774	20
6.3	7	4914	662	70	3359	464	1000	7

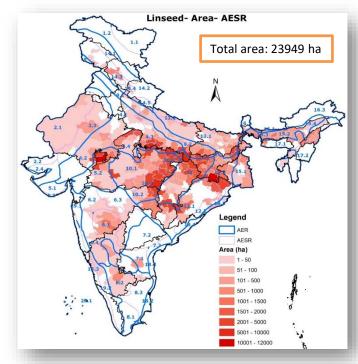
- Agro-ecological sub-region (AESR) wise area and yield of crop (mean of 5 year data)
- Soil conditions and LGP
- ➤ AESR specific interventions to ↓yield gap and to ↑area



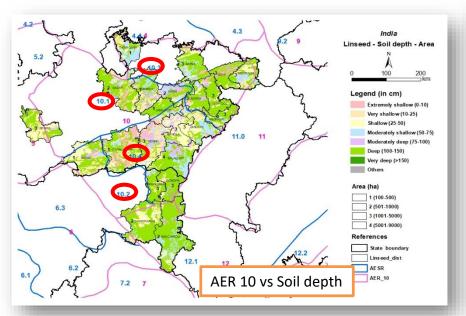


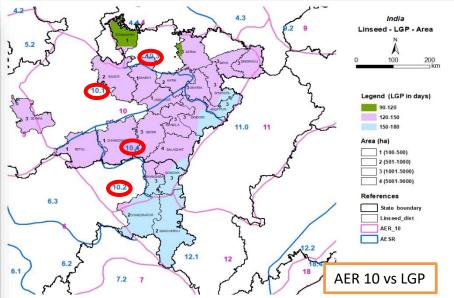

Sesame

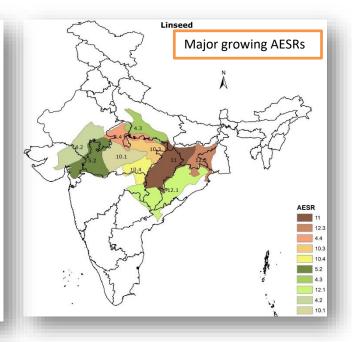
- Agro-ecological sub-region
 (AESR) wise area and yield of crop (mean of 5 years data)
- Soil conditions
- Climatic conditions
- Length of growing period (LGP)
- AESR specific interventions to
 ↓yield gap and to ↑area



AECD	No. of	0 ()	Y (kg/ha)	Area range		Yield range		0/ 4
AESR	districts	A (ha)		min.	max.	min.	max.	% Area
4.4	13	349286	409	258	110854	61	665	20.2
15.1	14	251312	779	205	81778	624	1077	14.5
								35
4.3	19	165757	224	180	37479	105	680	9.6
2.3	11	120122	377	75	65608	204	863	6.9
12.1	30	104463	376	51	36617	194	658	6.0
								23
10.3	9	80136	444	173	27612	276	564	4.6
4.2	20	78824	403	51	28995	192	579	4.5
2.4	5	76180	532	5092	33740	472	680	4.4
4.1	23	74584	380	50	29289	75	1000	4.3
2.1	6	52036	288	2090	21470	199	398	3.0
								21




Linseed


- Agro-ecological sub-region
 (AESR) wise area and yield of crop (mean of 5 years data)
- Soil conditions
- Climatic conditions
- Length of growing period (LGP)
- AESR specific interventions to ↓yield gap and to ↑area

		No. of		Υ					
l	AESR	districts	A (ha)	(kg/ha)	Area	range	Yield	range	% Area
					min.	max.	min.	max.	
	11	19	40612	341	374	7090	222	545	17.0
	12.3	19	37433	600	143	11688	213	944	15.6
	4.4	8	23136	640	487	7515	391	1152	9.7
									42
	10.3	8	22126	615	148	4693	360	898	9.2
	10.4	9	20186	512	111	8551	252	1102	8.4
	5.2	8	18708	951	102	10872	664	1566	7.8
	4.3	9	9556	534	122	3597	359	687	4.0
									29
	12.1	8	9303	426	190	2337	257	509	3.9
	4.2	3	8030	940	183	6952	806	1176	3.4
	10.1	5	6264	662	287	4322	450	826	2.6
									10

Identification of growth retardant and harvest aid chemical for facilitation of machine harvesting in castor

- •Paclobutrazol at 40 g a.i./ha was identified as the most effective growth retardant for reducing plant height in castor by inhibiting cell elongation.
- •Primary seed yield remained comparable under Paclobutrazol application (40 g a.i./ha) at both wider (90 \times 60 cm) and closer (60 \times 45 cm) spacings.
- •Paraquat dichloride at 1 ml/litre was found to be the most effective desiccant to aid harvest in castor

With closer spacing (60X45cm), growth retardant (Paclobutrazol @40g ai/ha) along with harvest aid chemical (Paraquat dichloride @ 1ml/litre) and harvesting of only primary spikes, it is possible to get on par or higher seed yield with reduced crop duration that can facilitate machine harvesting in castor

Technology – Safflower cropping system & soil moisture based agronomy

Climate resilient technologies in safflower production systems

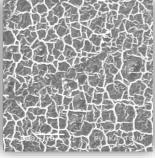
	Growing region	Technology			
1a	Southern Telangana zone AER/AESR: 6/6.2; LGP: 120-150 days; Rainfall: 850 mm; Deep Vertisols; Profile soil moisture: 300-350 mm	Broad Bed and Furrow (BBF) (1.2 + 0.3 m); Soybean-safflower; Soybean: 4 rows/BBF x RDF; Safflower: 3 rows/BBF x RDF + Azos. + PSB			
1b	Southern Telangana zone AER/AESR: 6/6.2; LGP: 120-150 days; Rainfall: 850 mm; Deep Vertisols; Profile soil moisture: 200-250 mm	Broad Bed and Furrow (1.2 + 0.3 m); Soybean-safflower; Soybean: 4 rows/BBF x RDF; Safflower: 2 rows/BBF x 50% RDF + Azos. + PSB			

S (P through SSP); B, Zn, Fe (wherever soils are deficient) were added to kharif crops; Safflower was sown in zero tillage conditions under residual soil moisture

ICAR-Indian Institute of Oilseeds Research

Rajendranagar, Hyderabad-500030
Phone: 040-24598444, 24016141, Fax: 040-24017969; Website: icar-iior.org.in

Biopolymer-based Multilayer Seed Coating Technology for Multiinput Delivery for Crop Productivity Enhancement


Biopolymers (Bio-1 and Bio-2) developed as a stable crosslinked film coating polymers with Trichoderma for seed coating and evaluated against soil borne diseases in oilseeds crops

Biopolymer (Chitosan) Film

Chitosan+ Trichoderma film

Biopolymer Film Matrix -SEM

International Journal of Biological Macromolecules 126 (2019) 282-290

Contents lists available at ScienceDirect International Journal of Biological Macromolecules

journal homepage: http://www.elsevier.com/locate/ijbiomac

NAAS rating 14.04

Biopolymer2-Th4d (Biocoat)

Groundnut, Sunflower Seed coated with biopolymer + Trichoderma

Groundnut, Sunflower Seeds coated with Trichoderma powder

Biopolymer-1 Th4d (Biofilm)

Patent granted: polymer composition and process preparation (Patent No. IN 515057)

